Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).

Identifieur interne : 003889 ( Main/Exploration ); précédent : 003888; suivant : 003890

Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).

Auteurs : Adám Solti [Hongrie] ; Lászl Gáspár ; Ilona Mészáros ; Zoltán Szigeti ; Lászl Lévai ; Eva Sárvári

Source :

RBID : pubmed:18757882

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed.

METHODS

Fe-citrate at 10 microm or 50 microm was given with or without 10 microm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca 'Kopeczkii') with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment-protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging.

KEY RESULTS

In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment-protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and DeltaF/Fm') recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and DeltaF/Fm' proved to be the most-rapidly reacting parameters.

CONCLUSIONS

Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.


DOI: 10.1093/aob/mcn160
PubMed: 18757882
PubMed Central: PMC2712383


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).</title>
<author>
<name sortKey="Solti, Adam" sort="Solti, Adam" uniqKey="Solti A" first="Adám" last="Solti">Adám Solti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest, 1117 Hungary. sadambio@elte.hu</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest</wicri:regionArea>
<wicri:noRegion>Pázmány P. sétány 1/C Budapest</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaspar, Laszl" sort="Gaspar, Laszl" uniqKey="Gaspar L" first="Lászl" last="Gáspár">Lászl Gáspár</name>
</author>
<author>
<name sortKey="Meszaros, Ilona" sort="Meszaros, Ilona" uniqKey="Meszaros I" first="Ilona" last="Mészáros">Ilona Mészáros</name>
</author>
<author>
<name sortKey="Szigeti, Zoltan" sort="Szigeti, Zoltan" uniqKey="Szigeti Z" first="Zoltán" last="Szigeti">Zoltán Szigeti</name>
</author>
<author>
<name sortKey="Levai, Laszl" sort="Levai, Laszl" uniqKey="Levai L" first="Lászl" last="Lévai">Lászl Lévai</name>
</author>
<author>
<name sortKey="Sarvari, Eva" sort="Sarvari, Eva" uniqKey="Sarvari E" first="Eva" last="Sárvári">Eva Sárvári</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18757882</idno>
<idno type="pmid">18757882</idno>
<idno type="doi">10.1093/aob/mcn160</idno>
<idno type="pmc">PMC2712383</idno>
<idno type="wicri:Area/Main/Corpus">003806</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003806</idno>
<idno type="wicri:Area/Main/Curation">003806</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003806</idno>
<idno type="wicri:Area/Main/Exploration">003806</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).</title>
<author>
<name sortKey="Solti, Adam" sort="Solti, Adam" uniqKey="Solti A" first="Adám" last="Solti">Adám Solti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest, 1117 Hungary. sadambio@elte.hu</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest</wicri:regionArea>
<wicri:noRegion>Pázmány P. sétány 1/C Budapest</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaspar, Laszl" sort="Gaspar, Laszl" uniqKey="Gaspar L" first="Lászl" last="Gáspár">Lászl Gáspár</name>
</author>
<author>
<name sortKey="Meszaros, Ilona" sort="Meszaros, Ilona" uniqKey="Meszaros I" first="Ilona" last="Mészáros">Ilona Mészáros</name>
</author>
<author>
<name sortKey="Szigeti, Zoltan" sort="Szigeti, Zoltan" uniqKey="Szigeti Z" first="Zoltán" last="Szigeti">Zoltán Szigeti</name>
</author>
<author>
<name sortKey="Levai, Laszl" sort="Levai, Laszl" uniqKey="Levai L" first="Lászl" last="Lévai">Lászl Lévai</name>
</author>
<author>
<name sortKey="Sarvari, Eva" sort="Sarvari, Eva" uniqKey="Sarvari E" first="Eva" last="Sárvári">Eva Sárvári</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium (toxicity)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carotenoids (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Fluorescence (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Light (MeSH)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (physiology)</term>
<term>Populus (radiation effects)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Stress, Physiological (radiation effects)</term>
<term>Thylakoids (drug effects)</term>
<term>Thylakoids (metabolism)</term>
<term>Thylakoids (radiation effects)</term>
<term>Xanthophylls (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cadmium (toxicité)</term>
<term>Caroténoïdes (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Fluorescence (MeSH)</term>
<term>Lumière (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (effets des radiations)</term>
<term>Thylacoïdes (effets des médicaments et des substances chimiques)</term>
<term>Thylacoïdes (effets des radiations)</term>
<term>Thylacoïdes (métabolisme)</term>
<term>Xanthophylles (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Carotenoids</term>
<term>Chlorophyll</term>
<term>Iron</term>
<term>Photosystem II Protein Complex</term>
<term>Plant Proteins</term>
<term>Xanthophylls</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stress physiologique</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stress physiologique</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caroténoïdes</term>
<term>Chlorophylle</term>
<term>Complexe protéique du photosystème II</term>
<term>Dioxyde de carbone</term>
<term>Fer</term>
<term>Protéines végétales</term>
<term>Thylacoïdes</term>
<term>Xanthophylles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fluorescence</term>
<term>Kinetics</term>
<term>Light</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Fluorescence</term>
<term>Lumière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Fe-citrate at 10 microm or 50 microm was given with or without 10 microm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca 'Kopeczkii') with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment-protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment-protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and DeltaF/Fm') recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and DeltaF/Fm' proved to be the most-rapidly reacting parameters.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18757882</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>102</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2008</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).</ArticleTitle>
<Pagination>
<MedlinePgn>771-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcn160</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Fe-citrate at 10 microm or 50 microm was given with or without 10 microm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca 'Kopeczkii') with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment-protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment-protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and DeltaF/Fm') recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and DeltaF/Fm' proved to be the most-rapidly reacting parameters.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Solti</LastName>
<ForeName>Adám</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology and Molecular Plant Biology, Eötvös University, Pázmány P. sétány 1/C Budapest, 1117 Hungary. sadambio@elte.hu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gáspár</LastName>
<ForeName>László</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mészáros</LastName>
<ForeName>Ilona</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Szigeti</LastName>
<ForeName>Zoltán</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lévai</LastName>
<ForeName>László</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sárvári</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024341">Xanthophylls</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>36-88-4</RegistryNumber>
<NameOfSubstance UI="D002338">Carotenoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002338" MajorTopicYN="N">Carotenoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024341" MajorTopicYN="N">Xanthophylls</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18757882</ArticleId>
<ArticleId IdType="pii">mcn160</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcn160</ArticleId>
<ArticleId IdType="pmc">PMC2712383</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2003 Feb;54(383):757-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1761-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 16;21(24):6709-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12485992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1607-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2007 May;92(2):261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2008 Sep-Oct;84(5):1048-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3695-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):655-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2006 Jul 3;84(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 4;1659(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15511524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 15;272(33):20451-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9252354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1994 Aug-Sep;15(8-9):1068-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7859709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Apr;25(4):365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2005 Oct;99(10):2081-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Sep;25(9):1173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2006 Nov;88(11):1707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):793-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 5;435(7038):42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15875011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 7;1706(1-2):158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jan;69(1):107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Environ Biophys. 1990;29(4):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2281139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):635-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gaspar, Laszl" sort="Gaspar, Laszl" uniqKey="Gaspar L" first="Lászl" last="Gáspár">Lászl Gáspár</name>
<name sortKey="Levai, Laszl" sort="Levai, Laszl" uniqKey="Levai L" first="Lászl" last="Lévai">Lászl Lévai</name>
<name sortKey="Meszaros, Ilona" sort="Meszaros, Ilona" uniqKey="Meszaros I" first="Ilona" last="Mészáros">Ilona Mészáros</name>
<name sortKey="Sarvari, Eva" sort="Sarvari, Eva" uniqKey="Sarvari E" first="Eva" last="Sárvári">Eva Sárvári</name>
<name sortKey="Szigeti, Zoltan" sort="Szigeti, Zoltan" uniqKey="Szigeti Z" first="Zoltán" last="Szigeti">Zoltán Szigeti</name>
</noCountry>
<country name="Hongrie">
<noRegion>
<name sortKey="Solti, Adam" sort="Solti, Adam" uniqKey="Solti A" first="Adám" last="Solti">Adám Solti</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003889 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003889 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18757882
   |texte=   Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18757882" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020